AMTD: Mirror Substrate Design Trade Study

Matthew Fitzgerald
BS ME, University of Tennessee-Martin
Graduate Studies, University of Illinois

H. Philip Stahl

Trade Study

Using Arnold Lightweight Mirror Modeler tool, evaluate candidate primary mirror substrate and assembly designs.

Assembly is Substrate, Support Structure & Interface Geometry

Evaluation Criteria

Mass This Study

Thickness (volume) This Study

First Mode Frequency (stiffness)

This Study

1.5 G Internal Stress Future Study

Dynamic Launch Loads Future Study

Thermal Deformation Future Study

Thermal Time Constant Future Study

This presentation is reporting on Substrate Trade Study only

Current Mirror Substrate Trade Study

Evaluated four mirror architectures:

4 meter solid

4 meter lightweight closed back

8 meter solid

8 meter lightweight closed back

Maximize First Mode Frequency as a function of:

Depth

Face sheet Thickness

Rib Thickness

Radius of Curvature

Constraints: 4 m monolithic 8 m monolithic

Mass < 720 kg < 10,000 kg

Thickness < 500 mm < 500 mm

Future Mirror Substrate Trade Study

We plan to expand the study to include:

Open Back Substrates

And study Performance Criteria as a function of:

Depth

Face sheet Thickness

Rib Thickness

Radius of Curvature

Material Choice

Material Property Variation

Mount Interface (3, 6, 9 point)

Backing Structure Design

Design Process

Defining dimensions on left & check boxes for design elements

Outer Dia 4 Inner Dia 0.8 Cell Width 0.22 Lip Inner 0.03 Segment Lip 0.03 Mirror Lip 0.03	Supports Each Segment Whole Mirror Show Whole Grid Show Supports Show Fillets	DISPLAY GRID DISPLAY MODEL WRITE MODEL SAVE RESTORE MERGE NODES
Num Rings 2 Sgmt Span 1.5 Sgmt Gap 0.075 Merge Tol 0.016 Grid Zoom 1 Segment Shown 1 Srink Factor 0.05	Boule Mapping Grid Options Optical Reals Core Hexapod Axial Radial Inertial Low Outer Sgmt Lip	oads Modal (PSD) Cell Level 0 Cell Level 1 Cell Level 2
	Status Finished Loading A	rchive File

Design Process

Specify "reals" or real constants used by Ansys

Design Process

Core Specification has its own tab.

Core depth is total core thickness divided by number layers.

Front & back depths include facesheet thickness & pocket depth.

Grid View

Grid view shows internal core segments, lips, cells, and isogrid

4 meter Design

8 meter Design

ANSYS performs Modal Analysis

Trade Study Concept #1: 4 m Solid

Design:

Diameter 4 meters

Thickness 22 mm

Mass 595 kg

First Mode 8.2 Hz

Trade Study Concept #2: 4 meter Lightweight

Diameter 4 meters

Thickness 410 mm

Facesheet 3 mm

Mass 621 kg

First Mode 124.5 Hz

Trade Study Concept #3: 8 meter Solid 22 MT

Design:

Diameter 8 meter

Thickness 200 mm

Mass 21,800 kg

First Mode 18 Hz

Same as ATLAST Study

Trade Study Concept #4: 8 meter Lightweight

Design:

Diameter 8 meter

Thickness 510 mm

Facesheet 7 mm

Mass 3,640 kg

First Mode 48.4 Hz

Parameter Trade Studies

4 meter

Symmetric vs. Offset

ModelFile 4 m unsymmetric

IN OUT

ΛNS

JUL 26 2012

JUL 26 2012

For a 4 meter, 310 mm thick mirror substrate, there is no observable difference between symmetric and off-set

ModelFile 4m symmetric

4 meter Stiffness & Mass vs Core Height

As expected, Core Depth has the greatest impact on stiffness; the deeper the Core the Stiffer and more Massive the Substrate.

4 m Stiffness & Mass vs Facesheet Thickness

Increasing Facesheet thickness increases stiffness only to a point, then the stiffness deceases with additional thickness.

4 m Stiffness & Mass vs Internal Core Thickness

Increasing thickness of internal Core Elements results in minor stiffness increase.

4 m Stiffness & Mass vs Radius of Curvature

At 4 meter, Radius of Curvature has insignificant effect on Stiffness and Mass

Parametric Trade Studies

8 meter

Symmetric vs. Offset

For a 8 meter, 500 mm thick mirror substrate, there is only minor differences between symmetric and off-set

Symmetric (48.3 Hz)

Offset (47.9 Hz)

8 m Stiffness & Mass vs Facesheet Thickness

Increasing Facesheet thickness increases stiffness only to a point.

8 m Stiffness & Mass vs Radius of Curvature

At 8 meter, Radius of Curvature has an insignificant effect on Stiffness and Mass – plot is misleading mass change is 6 kg.

Conclusion

We have used the Arnold Lightweight Mirror Modeler tool to generate 4 point designs and several parameter trade studies.

These trade studies allow one manipulate design architectural elements to maximize mirror stiffness for mass constraint.

Tool allows one to generate a complete model and analysis in less than 60 minutes

Results Summary

4m Trade Study								
Architecture	Solid	Closed Back	Optimized					
Mass	595 Kg	512 Kg	590 Kg	604 Kg	632 Kg	660 Kg	700 Kg	621 Kg
First Mode								
Frequency	8.2 Hz	101.4 Hz	115.0 Hz	117.5 Hz	120.9 Hz	122.9 Hz	136.3 Hz	124.5 Hz
Core Depth	N/A	30mm	40mm	40mm	40mm	40mm	50mm	40mm
Facesheet								
Thickness	22 mm	2.5 mm	2.5 mm	3 mm	4 mm	5 mm	2.5 mm	3 mm

8m Trade Study								
Architecture	Solid	Closed Back	Closed Back	Closed Back	Optimized			
Mass	21801 Kg	3091 Kg	3305 Kg	3574 Kg	3637 Kg			
First Mode								
Frequency	18.0 Hz	39.3 Hz	42.3 Hz	44.3 Hz	48.4 Hz			
Core Depth	N/A	50 mm	50 mm	50 mm	50 mm			
Facesheet								
Thickness	200 mm	3 mm	5 mm	7.5 mm	7 mm			